Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 670-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297122

RESUMO

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Biocatálise/efeitos da radiação , Cálcio/metabolismo , Cristalografia , Transporte de Elétrons/efeitos da radiação , Elétrons , Manganês/metabolismo , Oxirredução/efeitos da radiação , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Prótons , Fatores de Tempo , Tirosina/metabolismo , Água/química , Água/metabolismo
2.
IUCrJ ; 8(Pt 3): 431-443, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953929

RESUMO

Photosystem II (PSII) catalyzes light-induced water oxidation through an S i -state cycle, leading to the generation of di-oxygen, protons and electrons. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S1-to-S2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S1-to-S2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.

3.
Science ; 366(6463): 334-338, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624207

RESUMO

Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation.


Assuntos
Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Água/química , Cálcio/química , Cristalografia por Raios X , Análise de Fourier , Hidrogênio/química , Ligação de Hidrogênio , Lasers , Ligantes , Manganês/química , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Conformação Proteica , Água/metabolismo
4.
Nature ; 543(7643): 131-135, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28219079

RESUMO

Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique µ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Luz , Oxigênio/química , Oxigênio/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/efeitos da radiação , Biocatálise/efeitos da radiação , Cianobactérias/química , Transporte de Elétrons/efeitos da radiação , Análise de Fourier , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Ferroproteínas não Heme/efeitos da radiação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
5.
FEBS Lett ; 590(24): 4650, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28008615
6.
FEBS Lett ; 590(14): 2086-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27279545

RESUMO

Ca(2+) -ATPase of sarcoplasmic reticulum is known to pump Mn(2+) in addition to Ca(2+) , but whether its transport mechanism is identical to that of Ca(2+) is ambiguous. To clarify, we examined, by atomic absorption spectroscopy, competition between Mn(2+) and Ca(2+) in active transport using vesicles of sarcoplasmic reticulum (SR). Here, we demonstrate that Ca(2+) -ATPase transports Ca(2+) and Mn(2+) concomitantly but has a much lower affinity for Mn(2+) (apparent Kd ~ 0.5 mm). Stoichiometries of transported ions per ATP hydrolysed, Vmax values and activation energies are very similar. Altogether, Ca(2+) -ATPase appears to use the same mechanism for transporting Mn(2+) as that for Ca(2+) .


Assuntos
Trifosfato de Adenosina/metabolismo , Manganês/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/enzimologia , Animais , Transporte de Íons/fisiologia , Coelhos
7.
Biochim Biophys Acta ; 1852(10 Pt A): 2042-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26170059

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic disorder in which multiple genes are aberrantly spliced. Sarco/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) is one of these genes, and it encodes a P-type ATPase. SERCA1 transports Ca(2+) from the cytosol to the lumen, and is involved in muscular relaxation. It has two splice variants (SERCA1a and SERCA1b) that differ in the last eight amino acids, and the contribution of these variants to DM1 pathology is unclear. Here, we show that SERCA1b protein is highly expressed in DM1 muscle tissue, mainly localised at fast twitch fibres. Additionally, when SERCA1a and SERCA1b were overexpressed in cells, we found that the ATPase and Ca(2+) uptake activity of SERCA1a was almost double that of SERCA1b. Although the affinity for both ATP and Ca(2+) was similar between the two variants, SERCA1b was more sensitive to the inner microsomal environment. Thus, we hypothesise that aberrant expression of SERCA1b in DM1 patients is the cause of abnormal intracellular Ca(2+) homeostasis.

8.
Genes Genet Syst ; 88(3): 175-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24025246

RESUMO

E. coli YdbK is predicted to be a pyruvate:flavodoxin oxidoreductase (PFOR). However, enzymatic activity and the regulation of gene expression of it are not well understood. In this study, we found that E. coli cells overexpressing the ydbK gene had enhanced PFOR activity, indicating the product of ydbK to be a PFOR. The PFOR was labile to oxygen. The expression of ydbK was induced by superoxide generators such as methyl viologen (MV) in a SoxS-dependent manner after a lag period. We identified a critical element upstream of ydbK gene required for the induction by MV and proved direct binding of SoxS to the element. E. coli ydbK mutant was highly sensitive to MV, which was enhanced by additional inactivation of fpr gene encoding ferredoxin (flavodoxin):NADP(H) reductase (FPR). Aconitase activity, a superoxide sensor, was more extensively decreased by MV in the E. coli ydbK mutant than in wild-type strain. The induction level of soxS gene was higher in E. coli ydbK fpr double mutant than in wild-type strain. These results indicate that YdbK helps to protect cells from oxidative stress. It is possible that YdbK maintains the cellular redox state together with FPR and is involved in the reduction of oxidized proteins including SoxR in the late stages of the oxidative stress response in E. coli.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Estresse Oxidativo , Transativadores/genética , Transativadores/metabolismo , Aconitato Hidratase/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Escherichia coli/genética , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Dados de Sequência Molecular , Mutagênese , Oxirredução , Paraquat/farmacologia , Regiões Promotoras Genéticas , Superóxidos/metabolismo
9.
Genes Genet Syst ; 87(2): 115-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22820385

RESUMO

Oxidatively damaged bases in DNA can cause cell death, mutation and/or cancer induction. To overcome such deleterious effects of DNA base oxidation, cells are equipped with base excision repair (BER) initiated by DNA glycosylases. Endonuclease III (Nth), a major DNA glycosylase, mainly excises oxidatively damaged pyrimidines from DNA. The aims of this study were to obtain an overview of the repair mechanism of oxidatively damaged bases and to elucidate the function of BER in maintaining genome stability during embryogenesis and development. In this study, we used the ascidian Ciona intestinalis because at every developmental stage it is possible to observe the phenotype of individuals with DNA damage or mutations. Sequence alignment analysis revealed that the amino acid sequence of Ciona intestinalis Nth homologue (CiNTH) had high homology with those of Escherichia coli, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and human Nth homologues. It was evident that two domains, the Helix-hairpin-Helix and 4Fe-4S cluster domains that are critical regions for the Nth activity, are well conserved in CiNTH. CiNTH efficiently complemented the sensitivity of E. coli nth nei mutant to H(2)O(2). CiNTH was bifunctional, with DNA glycosylase and AP lyase activities. It removed thymine glycol, 5-formyluracil and 8-oxoguanine paired with G from DNA via a ß-elimination reaction. Interestingly, the N-terminal 44 amino acids were essential for the DNA glycosylase activity of CiNTH.


Assuntos
Ciona intestinalis/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Sequência de Aminoácidos , Animais , Ciona intestinalis/metabolismo , DNA/genética , Dano ao DNA , Reparo do DNA , Escherichia coli/genética , Regulação da Expressão Gênica , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Espécies Reativas de Oxigênio , Alinhamento de Sequência , Timina/análogos & derivados , Timina/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo
10.
J Radiat Res ; 53(1): 58-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22302046

RESUMO

Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox(TM) Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Neoplasias/fisiologia , Tolerância a Radiação/fisiologia , Superóxido Dismutase/fisiologia , Quebras de DNA de Cadeia Dupla , Indução Enzimática , Raios gama/efeitos adversos , Redes Reguladoras de Genes/efeitos da radiação , Células HeLa/metabolismo , Células HeLa/efeitos da radiação , Humanos , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Tolerância a Radiação/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxidos/metabolismo
11.
J Biochem ; 150(6): 649-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21873335

RESUMO

8-oxo-dGTP is generated in the nucleotide pool by direct oxidation of dGTP or phosphorylation of 8-oxo-dGDP. It can be incorporated into DNA during replication, which would result in mutagenic consequences. The frequency of spontaneous mutations remains low in cells owing to the action of enzymes degrading such mutagenic substrates. Escherichia coli MutT and human MTH1 hydrolyze 8-oxo-dGTP to 8-oxo-dGMP. Human NUDT5 as well as human MTH1 hydrolyze 8-oxo-dGDP to 8-oxo-dGMP. These enzymes prevent mutations caused by misincorporation of 8-oxo-dGTP into DNA. In this study, we identified a novel MutT homolog (NDX-1) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. NDX-1 did not hydrolyze 8-oxo-dGTP, 2-hydroxy-dATP or 2-hydroxy-dADP. Expression of NDX-1 significantly reduced spontaneous A:T to C:G transversions and mitigated the sensitivity to a superoxide-generating agent, methyl viologen, in an E. coli mutT mutant. In C. elegans, RNAi of ndx-1 did not affect the lifespan of the worm. However, the sensitivity to methyl viologen and menadione bisulfite of the ndx-1-RNAi worms was enhanced compared with that of the control worms. These facts indicate that NDX-1 is involved in sanitization of 8-oxo-dGDP and plays a critical role in defense against oxidative stress in C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Guanosina Monofosfato/análogos & derivados , Nucleotídeos/metabolismo , Estresse Oxidativo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Ativação Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Guanosina Monofosfato/metabolismo , Peróxido de Hidrogênio/farmacologia , Hidrólise , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Paraquat/farmacologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Interferência de RNA , Alinhamento de Sequência , Vitamina K 3/farmacologia
12.
Proc Natl Acad Sci U S A ; 108(5): 1833-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21239683

RESUMO

Trinitrophenyl derivatives of adenine nucleotides are widely used for probing ATP-binding sites. Here we describe crystal structures of Ca(2+)-ATPase, a representative P-type ATPase, in the absence of Ca(2+) with bound ATP, trinitrophenyl-ATP, -ADP, and -AMP at better than 2.4-Šresolution, stabilized with thapsigargin, a potent inhibitor. These crystal structures show that the binding mode of the trinitrophenyl derivatives is distinctly different from the parent adenine nucleotides. The adenine binding pocket in the nucleotide binding domain of Ca(2+)-ATPase is now occupied by the trinitrophenyl group, and the side chains of two arginines sandwich the adenine ring, accounting for the much higher affinities of the trinitrophenyl derivatives. Trinitrophenyl nucleotides exhibit a pronounced fluorescence in the E2P ground state but not in the other E2 states. Crystal structures of the E2P and E2 ∼ P analogues of Ca(2+)-ATPase with bound trinitrophenyl-AMP show that different arrangements of the three cytoplasmic domains alter the orientation and water accessibility of the trinitrophenyl group, explaining the origin of "superfluorescence." Thus, the crystal structures demonstrate that ATP and its derivatives are highly adaptable to a wide range of site topologies stabilized by a variety of interactions.


Assuntos
Nucleotídeos de Adenina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Trinitrobenzenos/metabolismo , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica
13.
Genes Genet Syst ; 85(4): 287-95, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21178309

RESUMO

The oxidized nucleotide precursors 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) and 1, 2-dihydro-2-oxo-dATP (2-oxo-dATP) are readily incorporated into nascent DNA strands during replication, which would cause base substitution mutations. E. coli MutT and human homologue hMTH1 hydrolyze 8-oxo-dGTP, thereby preventing mutations. In this study, we searched for hMTH1 homologues in the ascidian Ciona intestinalis using the NCBI-BLAST database. Among several candidates, we focused on one open reading frame, designated as CiMutT, because of its high degree of identity (41.7%) and similarity (58.3%) to the overall amino acid sequence of hMTH1, including the Nudix box. CiMutT significantly suppressed the mutator activity of E. coli mutT mutant. Purified CiMutT had a pyrophosphohydrolase activity that hydrolyzed 8-oxo-dGTP to 8-oxo-dGMP and inorganic pyrophosphate. It had a pH optimum of 9.5 and Mg(++) requirement with optimal activity at 5 mM. The activity of CiMutT for 8-oxo-dGTP was comparable to that of hMTH1, while it was 100-fold lower for 2-oxo-dATP than that of hMTH1. These facts indicate that CiMutT is a functional homologue of E. coli MutT. In addition, the enzyme hydrolyzed all four of the unoxidized nucleoside triphosphates, with a preference for dATP. The specific activity for 8-oxo-dGTP was greater than that for unoxidized dATP and dGTP. These results suggest that CiMutT has the potential to prevent mutations by 8-oxo-dGTP in C. intestinalis.


Assuntos
Ciona intestinalis/enzimologia , Enzimas Reparadoras do DNA/biossíntese , Monoéster Fosfórico Hidrolases/biossíntese , Sequência de Aminoácidos , Animais , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/isolamento & purificação , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Mutação , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Pirofosfatases/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência
14.
J Nucleic Acids ; 2010: 807579, 2010 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-20976264

RESUMO

Escherichia coli DNA polymerase IV (Pol IV) is involved in bypass replication of damaged bases in DNA. Reactive oxygen species (ROS) are generated continuously during normal metabolism and as a result of exogenous stress such as ionizing radiation. ROS induce various kinds of base damage in DNA. It is important to examine whether Pol IV is able to bypass oxidatively damaged bases. In this study, recombinant Pol IV was incubated with oligonucleotides containing thymine glycol (dTg), 5-formyluracil (5-fodU), 5-hydroxymethyluracil (5-hmdU), 7,8-dihydro-8-oxoguanine (8-oxodG) and 1,2-dihydro-2-oxoadenine (2-oxodA). Primer extension assays revealed that Pol IV preferred to insert dATP opposite 5-fodU and 5-hmdU, while it inefficiently inserted nucleotides opposite dTg. Pol IV inserted dCTP and dATP opposite 8-oxodG, while the ability was low. It inserted dCTP more effectively than dTTP opposite 2-oxodA. Pol IV's ability to bypass these lesions decreased in the order: 2-oxodA > 5-fodU~5-hmdU > 8-oxodG > dTg. The fact that Pol IV preferred to insert dCTP opposite 2-oxodA suggests the mutagenic potential of 2-oxodA leading to A:T→G:C transitions. Hydrogen peroxide caused an ~2-fold increase in A:T→G:C mutations in E. coli, while the increase was significantly greater in E. coli overexpressing Pol IV. These results indicate that Pol IV may be involved in ROS-enhanced A:T→G:C mutations.

15.
DNA Repair (Amst) ; 8(7): 844-51, 2009 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-19481506

RESUMO

Oxidatively damaged bases in DNA cause many types of deleterious effects. The main enzyme that removes such lesions is DNA glycosylase, and accordingly, DNA glycosylase plays an important role in genome stability. Recently, a relationship between DNA glycosylases and aging has been suggested, but it remains controversial. Here, we investigated DNA glycosylases of C. elegans, which is a useful model organism for studying aging. We firstly identified a C. elegans homolog of endonuclease III (NTH), which is a well-conserved DNA glycosylase for oxidatively damaged pyrimidine bases, based on the activity and homology. Blast searching of the Wormbase database retrieved a sequence R10E4.5, highly homologous to the human NTH1. However, the R10E4.5-encoded protein did not have NTH activity, and this was considered to be due to lack of the N-terminal region crucial for the activity. Therefore, we purified the protein encoded by the sequence containing both R10E4.5 and the 117-bp region upstream from it, and found that the protein had the NTH activity. The endogenous CeNTH in the extract of C. elegans showed the same DNA glycosylase activity. Therefore, we concluded that the genuine C. elegans NTH gene is not the R10E4.5 but the sequence containing both R10E4.5 and the 117-bp upstream region. NTH-deficient C. elegans showed no difference from the wild-type in lifespan and was not more sensitive to two oxidizing agents, H2O2 and methyl viologen. This suggests that C. elegans has an alternative DNA glycosylase that repairs pyrimidine bases damaged by these agents. Indeed, DNA glycosylase activity that cleaved thymine glycol containing oligonucleotides was detected in the extract of the NTH-deficient C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , DNA Glicosilases/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Dano ao DNA , DNA Glicosilases/genética , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Teste de Complementação Genética , Humanos , Peróxido de Hidrogênio/farmacologia , Cinética , Longevidade , Dados de Sequência Molecular , Mutação , Oxirredução/efeitos dos fármacos , Paraquat/farmacologia , Nucleotídeos de Pirimidina/genética , Nucleotídeos de Pirimidina/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
16.
Nucleic Acids Res ; 37(7): 2116-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19223326

RESUMO

The 5-formyluracil (5-foU), a major mutagenic oxidative damage of thymine, is removed from DNA by Nth, Nei and MutM in Escherichia coli. However, DNA polymerases can also replicate past the 5-foU by incorporating C and G opposite the lesion, although the mechanism of correction of the incorporated bases is still unknown. In this study, using a borohydride-trapping assay, we identified a protein trapped by a 5-foU/C-containing oligonucleotide in an extract from E. coli mutM nth nei mutant. The protein was subsequently purified from the E. coli mutM nth nei mutant and was identified as KsgA, a 16S rRNA adenine methyltransferase. Recombinant KsgA also formed the trapped complex with 5-foU/C- and thymine glycol (Tg)/C-containing oligonucleotides. Furthermore, KsgA excised C opposite 5-foU, Tg and 5-hydroxymethyluracil (5-hmU) from duplex oligonucleotides via a beta-elimination reaction, whereas it could not remove the damaged base. In contrast, KsgA did not remove C opposite normal bases, 7,8-dihydro-8-oxoguanine and 2-hydroxyadenine. Finally, the introduction of the ksgA mutation increased spontaneous mutations in E. coli mutM mutY and nth nei mutants. These results demonstrate that KsgA has a novel DNA glycosylase/AP lyase activity for C mispaired with oxidized T that prevents the formation of mutations, which is in addition to its known rRNA adenine methyltransferase activity essential for ribosome biogenesis.


Assuntos
DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Escherichia coli/enzimologia , Metiltransferases/metabolismo , Sequência de Aminoácidos , DNA Glicosilases/genética , DNA Glicosilases/isolamento & purificação , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/isolamento & purificação , DNA-Formamidopirimidina Glicosilase/química , DNA-Formamidopirimidina Glicosilase/genética , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Metiltransferases/química , Metiltransferases/genética , Alinhamento de Sequência
17.
J Radiat Res ; 50(1): 19-26, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987436

RESUMO

Base moieties in DNA are spontaneously threatened by naturally occurring chemical reactions such as deamination, hydrolysis and oxidation. These DNA modifications have been considered to be major causes of cell death, mutations and cancer induction in organisms. Organisms have developed the DNA base excision repair pathway as a defense mechanism to protect them from these threats. DNA glycosylases, the key enzyme in the base excision repair pathway, are highly conserved in evolution. Uracil constantly occurs in DNA. Uracil in DNA arises by spontaneous deamination of cytosine to generate pro-mutagenic U:G mispairs. Uracil in DNA is also produced by the incorporation of dUMP during DNA replication. Uracil-DNA glycosylase (UNG) acts as a major repair enzyme that protects DNA from the deleterious consequences of uracil. The first UNG activity was discovered in E. coli in 1974. This was also the first discovery of base excision repair. The sequence encoded by the ung gene demonstrates that the E. coli UNG is highly conserved in viruses, bacteria, archaea, yeast, mice and humans. In this review, we will focus on central and recent findings on the generation, biological consequences and repair mechanisms of uracil in DNA and on the biological significance of uracil-DNA glycosylase.


Assuntos
Arabinofuranosiluracila/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , Modelos Biológicos , Uracila-DNA Glicosidase/metabolismo , Animais , Simulação por Computador , Humanos
18.
Mutagenesis ; 23(5): 407-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18524757

RESUMO

Uracil arises in DNA from spontaneous deamination of cytosine and through incorporation of dUMP by DNA polymerase during DNA replication. Excision of uracil by the action of uracil-DNA glycosylase (Ung) initiates the base excision repair pathway to counter the promutagenic base modification. In this study, we cloned a cDNA-encoding Caenorhabditis elegans homologue (CeUng-1) of Escherichia coli Ung. There was 49% identity in amino acid sequence between E.coli Ung and CeUng-1. Purified CeUng-1 removed uracil from both U:G and U:A base pairs in DNA. It also removed uracil from single-stranded oligonucleotide substrate less efficiently than double-stranded oligonucleotide. The CeUng-1 activity was inhibited by Bacillus subtilis Ung inhibitor, indicating that CeUng-1 is a member of the family-1 Ung group. The mutation in the ung-1 gene did not affect development, fertility and lifespan in C.elegans, suggesting the existence of backup enzyme. However, we could not detect residual uracil excision activity in the extract derived from the ung-1 mutant. The present experiments also showed that the ung-1 mutant of C.elegans was more resistant to NaHSO(3)-inducing cytosine deamination than wild-type strain.


Assuntos
Caenorhabditis elegans/enzimologia , Uracila-DNA Glicosidase/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Clonagem Molecular , Sequência Conservada , Citosina/metabolismo , Desaminação , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Sulfitos/toxicidade , Uracila-DNA Glicosidase/genética
19.
J Radiat Res ; 48(5): 417-24, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17641464

RESUMO

Bacteria and eukaryotes possess redundant enzymes that recognize and remove oxidatively damaged bases from DNA through base excision repair. DNA glycosylases remove damaged bases to initiate the base excision repair. The exocyclic methyl group of thymine does not escape oxidative damage to produce 5-formyluracil (5-foU) and 5-hydroxymethyluracil (5-hmU). 5-foU is a potentially mutagenic lesion. A homolog of E. coli endonuclease III (SpNth1) had been identified and characterized in Schizosaccharomyces pombe. In this study, we found that SpNth1 recognizes and removes 5-foU and 5-hmU from DNA with similar efficiency. The specific activities for the removal of 5-foU and 5-hmU were comparable with that for thymine glycol. The expression of SpNth1 reduced the hydrogen peroxide toxicity and the frequency of spontaneous mutations in E. coli nth nei mutant. It was also revealed that SpNth1 had DNA glycosylase activity for removing 8-oxo-7,8-dihydroguanine (8-oxoG) from 8-oxoG/G and 8-oxoG/A mispairs. These results indicated that SpNth1 has a broad substrate specificity and is involved in the base excision repair of 8-oxoG and thymine residues oxidized in the methyl group in S. pombe.


Assuntos
DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Metilação de DNA , Guanina/química , Guanina/metabolismo , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Timina/química , Timina/metabolismo
20.
J Radiat Res ; 46(2): 205-14, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15988139

RESUMO

The frequency of G:C-->C:G transversions significantly increases upon exposure of cells to ionizing radiation or reactive oxygen species. Transversions can be prevented by base excision repair, which removes the causative modified bases from DNA. Our previous studies revealed that MutY is responsible for removing guanine from 7,8-dihydro-8-oxoguanine/guanine mispairs (8-oxoG/G) and prevents the generation of G:C-->C:G transversions in E. coli. SpMYH, a homolog of E. coli MutY, had been identified and characterized in the fission yeast S. pombe. Purified SpMYH has adenine DNA glycosylase activity on A/8-oxoG and A/G mismatch-containing oligonucleotides. In this study, we examined whether SpMYH has a similar activity allowing it to remove G from 8-oxoG/G in DNA. The purified SpMYH tightly bound to duplex oligonucleotides containing 8-oxoG/G and removed the unmodified G from 8-oxoG/G as efficiently as A from 8-oxoG/A. The activity was absent in the cell extract prepared from an SpMYH-knockout strain of S. pombe. The expression of SpMYH markedly reduced the frequency of spontaneous G:C-->C:G transversions in the E. coli mutY mutant. These results demonstrate that SpMYH is involved in the repair of 8-oxoG/G, by which it prevents mutations induced by oxidative stress in S. pombe.


Assuntos
Pareamento Incorreto de Bases , Dano ao DNA , DNA Glicosilases/química , Reparo do DNA , DNA Bacteriano/química , Guanina/análogos & derivados , Guanina/química , Schizosaccharomyces/enzimologia , Composição de Bases , DNA Glicosilases/genética , DNA Bacteriano/genética , Schizosaccharomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...